Part IV. Sequential models 

The final part of the book contains a unique chapter. A constructive definition of the sequential model is given here by means of the sequential method described earlier. This result is used also for the substantiation of the generalized and classic models of stationary heat transfer.
9. Sequential models of mathematical physics phenomenon
This is our final chapter (see Figure 9.1). We would like to determine a mathematical model of the heat transfer phenomenon under corresponding suppositions. Using a known physical law, we obtain the balance relations (see Chapter 1)
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on the selected elementary interval 
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 then we could obtain the classic mathematical model that consist of the boundary problem (see Chapter 1)                                    
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If we multiply the equality (9.1) by an arbitrary function from the Sobolev space 
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 and integrate by x, then after passing to the limit we could determine the generalized mathematical model (see Chapter 2)                                    
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For both cases, we have the same serious problem. This is the substantiation of the convergence. The desired result can be obtained if the state function u has a priori properties. It necessary that this function belongs to the set of twice continuously differentiable functions for the classic case and to the Sobolev space 
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 for the generalized one. In principle, we could prove these results under some suppositions with respect to the known functions k and f by the differential equation theory after obtaining mathematical models. However, we have no properties of the state function before the definition of these mathematical models. Therefore, the determination of these mathematical models is not clear.

Then we consider to the general definition of the convergence. The sequence tends to a limit if its elements with large enough numbers are close enough to this limit (see Chapter 3). Unfortunately, we cannot to use this definition for proving the convergence, because for the practical situation we know, as the rule, the elements of the sequence only. However, we do not know the limit. We do not know even if the considered sequence is convergent or not.

The general practical means of the substantiation of passage to the limit is the Cauchy criterion (see Chapter 3). Particularly, if a sequence is fundament, then it has a limit. This result is applicable, in principle, for the practical situation, because the definition of the fundamentality of sequences uses the elements of the sequence only. Unfortunately, this result is applicable for the complete spaces only (see Chapter 4). Unfortunately, majority of spaces are non-complete. Thus, we have the serious problem of proving the convergence for the general case. 
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Figure 9.1. Structure of the book

The reliable method of the analysis of the convergence for non-complete spaces is based on the technique of the Cantor's definition of the real numbers (see Chapter 4). Particularly, the space of rational numbers is non-complete. However, each non-convergent fundamental sequence of rational numbers determines an irrational real number. Besides, different fundamental sequences can determine the same real number. These sequences are called equivalent. Therefore, each real number by Cantor is the equivalence class of fundamental sequences of rational numbers. It is very important that each real number can be approximate by rational numbers. Besides, the space of real numbers is complete. 
This magnificent result can be extended to the general case. Particularly, a fundamental sequence on the arbitrary metric space can be non-convergent. However, it has a limit on the extension of the given space, which is called its completion (see Chapter 41). The initial metric space is isometric to a subspace of this completion that is dense there. Therefore, each element of the completion can be approximated by elements of the initial spaces. Besides, the completion is the complete metric space.

Thus, we have the forceful method of the substantiation of passing to the limit. At first, we try to prove that our sequence is fundamental with using the elements of this sequence only. Then this sequence has a limit. Maybe this limit is an element of the given space; and this is the easy case. Maybe this limit is an element of its completion only. This case is more difficult. However, we know the determination of the completion and the possibility of the approximation of this limit by elements of the initial space. This is the general idea of the sequential method. 
At first, we applied the sequential method for the definition of the p-adic numbers (see Chapter 6). This is a special numerical class. The set of p-adic numbers is the completion of the set of rational numbers with respect to the p-adic metric. 

Another example of the sequential object is the sequential control (see Chapter 7). The optimization control problems are often insolvable. However, the exact lower bound of the minimizing functional exists whenever this functional is lower bounded on the set of admissible controls. We determine the sequential controls as equivalence classes of the sequences of usual controls. Then we determine the sequential extension of the given optimization problem as a problem of minimization a special functional on the set of sequential controls. This problem is solvable without fail. Besides, its solution is determine by minimizing sequences for the initial optimization problem. Therefore, we can choose an element of such sequence with large enough number as an approximate solution of the initial problem.

Finally, we apply the sequential technique for the determination of distributions. This application is very important, because the distribution theory is the base of the generalized models of mathematical physics problems. One can determine the set of distributions as the completion of the space of infinite differential functions. Therefore, each distribution can be approximated by smooth functions. 
Now we try to use the sequential method for the correct determination a new form of mathematical model of the considered phenomenon. We determine the sequential model of the heat transfer phenomenon. Then we prove the existence of the generalized and classic state of the considered phenomenon.
9.1. Sequential model of the heat transfer phenomenon
We return to the consideration of the stationary one-dimensional heat transfer phenomenon in a non-homogeneous body under a source of heat with zero temperature at the ends of the body. Divide the given set ( = [0,L] by М equal parts with the step h = L/М. Determine the points  хi = ih, where i = 0,…,M. Consider the elementary intervals (i = (xi-1, xi), i = 1,…,M. Determine the set

Гh = {(1,…,(M}.
The grid function on the set Гh is the vector of the order М+1 with indexes 0,1,…,M.
The state of the system in the set (i satisfies the balance relations (9.1), (9.2) with x = xi
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Add also the boundary conditions

                                u(0) = 0, u(L) = 0.
                                            (9.5)    

We used, in principle, the analogical equalities for obtaining the classic and generalized mathematical models of the considered phenomenon (see Chapter 1 and Chapter 2). 

Determine the standard difference operators 
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by the formulas (see Chapter 1)
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Then we transform the balance relations (9.3), (9.4) to the difference equations 
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where  
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From the boundary conditions (9.5), it follows 
                               u0 = 0, uM = 0.                                                               (9.7)

The system of linear algebraic equations (9.6), (9.7) with triangle matrix is the discrete model of the system, and its solution is its discrete state of the system. We obtain it from the known physical law directly without using any mathematical hypothesis. Then we can solve\footnote{The methods of solving of the boundary problems for difference equations is described, for example in} the system (9.6), (9.7) and find all values ui, which determine the grid function 
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Now we determine the linear interpolation of the grid function (see Figure 9.2)
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                                   (9.8)
This function is determined on the set ( and depends from the step h. Consider now the set of all functions {uh} with the parameter h. The step h can be changed discretely. Therefore, we can interpreted the set {uh} as a sequence.
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Figure 9.2. Linear interpolation of the grid function.
Consider a linear topological space H of functions with the domain (. The sequence of linear interpolations {uh} of H is fundamental if 
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 Determine the equivalence of the fundamental sequences on the set H such that the sequence {uh} and {vh} are equivalent if 
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 in H as h(0. Now we can give the general definition\footnote{my book and paper}.
Definition 9.1. If the sequence {uh} of H is fundamental, then this is the sequential model of the system, and the corresponding equivalence class [uh] is called the sequential state.  
Remark 9.1. More exact, we have  H-sequential model and H-sequential state of the system, because these notions depend from the space H of sequence fundamentality.
The determination of the sequential model and the sequential state is correct. Indeed, for all step h we can determine the solution of the difference system (9.6), (9.7) that is a grid function. Then we determine its linear interpolation uh by the formula (9.8). Therefore, we have the sequence {uh}. If we prove its fundamentality with respect to a space H, then we obtain the sequential state of the system without any a priori mathematical hypothesis. This is an analogue of the Cantor real number, p-adic number, the sequential distribution, the element of the completion for the metric spaces, and the sequential control (see Table 9.1). Then we choose the function uh with small enough step h as an approximate solution of the considered problem. This is the analogue of the approximation of the irrational number by a rational number, the distribution by a smooth function, the element of completion by an element of the initial metric space, and the sequential control by an admissible one. 

Note that we work, in reality, with rational numbers and smooth functions that are approximations of irrational numbers and distributions, and not with irrational numbers and distributions themselves. Analogically, we have the sequential model [uh], but we apply its approximation uh with small enough step h.
Table 9.1. Sequential states and models

	object of analysis
	sequential state
	sequential model
	approximation

	stationary heat transfer
	sequential state [uh]
	sequential model {uh}
	interpolation uh

	number theory
	irrational number
	sequence of rational numbers
	rational number

	number theory
	p-adic number
	sequence of rational numbers
	rational number

	metric spaces
	point of the completion
	sequence of elements
of initial metric space 
	element of initial metric space

	optimization control
problem
	sequential control
	sequence 
of admissible controls
	admissible control

	distribution theory
	singular distribution
	sequence 
of smooth functions
	smooth function


Thus, we determine three different forms of mathematical models by the same balance relations. However, we have the same difference equations (9.6), (9.7) for finding the approximate solution of the system for all cases. Therefore, it could give us the approximation of classic, generalized, and sequential models.

9.2. Justification of sequential modeling
We have so far determined the sequential model. However, we did not substantiate it. At first, it is necessary to formulate some additional results of the discrete functions theory. This is the basis of the justification of the finite difference method\footnote{The finite difference method is described, for example in}. Consider the properties of the discrete spaces\footnote{The discrete spaces and its properties is described, for example, in Aubin Lions}. Denote by Vh the set of all grid functions. This, in reality, the very known set 
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The corresponding norm is determined by the equality
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Determine here also another norm
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and the norm of the adjoint space
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Remark 9.2. For any linear normalized space V the norm of adjoint space V', i.e. the set of all linear continuous functionals, is determine by the equality
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 is the value of the linear continuous functional u at the point v. This is true, for example, for the space 
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 that is adjoint to 
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 (see Chapter 8). By Riesz theorem, for any Hilbert space each linear continuous functional can be determined by the scalar product\footnote{The general theory of linear continuous functionals and Riesz theorem are described by standard courses of the functional analysis (see, for example, )}. 
Note the inequality
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The set Vh with norms 
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 is the discrete analogue of the spaces 
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Remark 9.3. The formula (9.9) is the partial case of the inequality
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for all linear normalized spaces V.
For any grid function 
[image: image39.wmf]h

v

 determine its linear interpolation (see Figure 9.2)
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and its piecewise constant interpolation (see Figure 9.3)
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These functions are determined on the set ( and depend from the step h. The operator that maps the grid function 
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 to the corresponding function with the domain (, for example, its interpolations vh and vh is called the extension operator. 
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Figure 9.3. Piecewise constant interpolation of the grid function.

Now return to the consideration of the discrete model (9.6), (9.7). Multiply the equality (9.6) by ui and sum by i. We obtain
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Using the formula of summing by parts (see the approximation of the generalized model, Chapter 2), for all grid function 
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such that vM is zero we have
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Then we transform the previous equality to
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                                                 (9.10)
Further transformations require some restrictions on the given functions k and f. Obviously, the function k that is the coefficient of thermal conductivity is positive by physical sense. Suppose the following inequality holds
                                                                    k(х)(k0, х((0,L),                                                      (9.11)

where k0 is a positive constant. From the equality (9.10) and the definition of the discrete norms, it follows that

[image: image48.wmf](

)

2

0

,

hhh

h

h

kuuf

£

.
 Using the inequality (9.9), we have
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Differentiate the equality (9.8). We get
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Then we have
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Suppose the function f satisfies the condition 
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 Then the following inequality holds
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where a positive constant c does not depends from h. From the formulas (9.12), it follows the boundedness of the sequence {uh} in 
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. Using Banach–Alaoglu theorem (see Chapter 8), extract a subsequence that is weakly convergent in 
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 as h(0. This is the weak convergence of the derivatives of the functions uh in the space L2(0,L). The convergence is stronger property than the fundamentality. Therefore, the sequence {uh} (more exact, its subsequence) is fundamental with respect to the weak topology of the Sobolev space. Thus, the class [uh] is the sequential state of the considered system, and the corresponding equivalence class is its sequential model. We proved the following result\footnote{my papers}:
Theorem 9.1. If the function k is lower bounded by a positive constant, and the function f belongs to the space 
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, then the sequence {uh} that is the linear interpolation of the grid function 
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, determined by the equalities (9.6), (9.7), is the sequential model of the stationary heat transfer phenomenon with respect to the space 
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 with weak topology. The corresponding equivalence class is the sequential state of the system. 
Remark 9.4. We determine this result for a subsequence of {uh}, not for the whole sequence. However, using the analogical technique, we can extract a subsequence from the arbitrary subsequence of {uh} that will be a sequential model of the system. 
Remark 9.5. We cannot guaranty the uniqueness of the sequential state here. Therefore, the different subsequences of {uh} can tend to the different sequential states. 
Thus, we have achieved the desired goal by constructing a mathematical model of the stationary heat transfer process without a priori constraints on the solution of the problem. The determined sequential state is the analogue of the Cantor real number, p-adic number, the sequential control, and the element of the completion of a metric space (see Table 9.1). 
It is important that, starting from the discrete balance relations after the passage to the limit we determined the continuous classical and generalized models. Besides, for the practical solution of the problem these continuous models are again discretized. In this case, all three stages of research are clearly identified and consistently implemented: the determination of the mathematical model, the proof of the existence of the corresponding state, and practical realization with the proof of the convergence of the algorithm for solving the problem based on the discrete model (see Figure 9.4). By the sequential approach, these steps are carried out simultaneously. Indeed, the discrete model is a direct consequence of physical laws, and the fundamentality of the sequence of interpolations of the grid function can serve both as a way to construct the sequential model, as the basis for the existence of the sequential state, and the basis for proving the algorithm for finding it (see next section).
Note that in this case it is possible not only to restrict ourselves to the sequential model, but to derive a generalized model from it, thereby providing a justification for the generalized approach.
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Рис. 9.4. Analysis of the problem by the different approach.
9.3. Generalized model of the heat transfer phenomenon 
The existence of a certain connection between the sequential and generalized models is indicated by the fact that in both cases the state of the system is associated with the same Sobolev space 
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. Note also the fact that earlier we established not only the fundamentality, but also the weak convergence of the sequence {uh} (more exact, of its subsequence). Then there exists a function u of this space such that uh ( u weakly in 
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. The question arises, what are the properties of this limit u? In general, we cannot answer it. However, under additional conditions one can pass to the limit in a discrete model and determine a relation with respect to the function u.                           
Consider a smooth enough function ( on the set ( with zero values on its boundary. Denote by (i the value of ( at the point хi. Multiply i-th equality (9.6) by the number (i and sum by the index i. We get
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Using the formula of summing by parts, for all grid function with components gi such that gM is zero we have
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Then we can transform the previous equality to

                                                        
[image: image64.wmf](

)

11

.

MM

ixixiii

ii

kuf

ddll

==

-=

åå

                                                 (9.13)
Find the derivative 
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where (h is the linear interpolation of the grid function 
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. Note that the piecewise-linear functions  uh and (h are continuous and also differentiable on the each open interval (i. Then we find the integral
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where kh is the piecewise-constant interpolation of the grid function 
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 (see Figure 9.3).

Find the grid function 
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 i = 1,…,M-1.

Using the formula of integration by part, we have 
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where gh is the point-constant interpolation of the grid function 
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By the previous equalities, the formula (9.13) is transformed to
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Pass to the limit here as h(0. 

Denote by fh the generalized derivative of the function gh. We have fh ( f in 
H-1(0,L) as h(0. This is equivalent to the convergence  gh ( g  in L2(0,L), where the generalized derivative of g is equal to f. 
 Determine the convergence
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  in  L2(0,L).
We have the inequality
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By the convergence of the sequence 
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Now we obtain
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Thus, we prove the convergence 
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It is necessary to have the additional properties of the function k for passing to the limit at the left-hand side of the equality (9.14). Under its continuity we have the convergence kh ( k in С[0,L].
Analyze the integral 
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By definition of the weak convergence of the sequence {uh} in 
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, we have  
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for all 
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The following inequality holds
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Choose equal to the product of k and the derivative of . Then we have the convergence
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Using the continuity of the function k, we get 
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By the boundedness of the sequence {uh} in 
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 the corresponding sequence of derivatives is bounded in L2(0,L). Therefore, we have the convergence
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Finally, from the inequality
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it follows the convergence
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Now we obtain
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Pass to the limit at the equality (9.14) with using the previous results. We get 
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                                (9.15)

There is, in reality, the generalized model of the considered phenomenon (see Chapter 2). Thus, the weak 
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 limit u of the sequence {uh} as h(0 is the generalized state of the system. Therefore, we proved the following result. 
Теорема 9.2\footnote{On can prove the existence of the general solution of the considered boundary problem by means of the Galerkin method, the variational method, and the Ritz method, see, for example, }. Under the condition of Theorem 9.1 and the continuity of the function k, there exists the generalized state of the system that is the 
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 weak limit of the linear interpolation of the discrete state. 
Thus, we not only give a correct determination of the mathematical model based on the sequential approach, but also justify the generalized approach. The existence of a limit of the sequence {uh}, which is a generalized state of the system, is analogous to the convergence of the minimizing sequence to the optimal control and the fundamental sequences of rational numbers and infinite differentiable functions to their limits (see Table 9.2). These objects (generalized state, optimal control, rational number, smooth function) can be identified up to isomorphism with regular sequential objects (regular sequential state, sequentially optimal control, rational real number, regular generalized function). For this, it suffices to consider stationary sequences with unique element equal to this limit. It follows that any generalized state of the system is in a certain sense its sequential state. However, for the proof of the solvability of the problem in the generalized sense, we needed an additional property of continuity of the function k that is not required for the construction of a sequential model. Thus, not every sequential state of the system coincides with its generalized state. These results are an analogue of the relation between the generalized and the classical states: the higher the degree of regularity of a state, the narrower the class of problems where it is realized (see Figure 9.5 and Figure 9.6).

Table 9.2. Sequential objects
	application
	class [uh]
	sequence {uh}
	value uh 
	transition uh ( u 
	value u 

	physical
phenomenon
	sequential
state
	sequential

model
	approximate
state
	there exists
the generalized state
	generalized state

	number theory
	real number
	approximating sequence of rational numbers
	rational 
approximation 
of a real number
	real number 
is rational
	rational number

	number theory
	р-adic number

	approximating sequence of rational numbers
	rational 
approximation 
of a р-adic number
	р-adic number 

is rational
	rational number

	distribution theory
	distribution
	approximating sequence of smooth functions
	smooth 
approximation 
of a distribution
	distribution
is regular
	smooth function

	metric space theory
	element of the completion
	fundamental
sequence of the initial elements 
	approximating object of the initial space
	metric space 
is complete
	element 
of the initial space

	optimization
control theory
	sequentially
optimal control
	minimizing 
control sequence
	approximate
solution
of the problem
	optimization
control problem 
is solvable
	optimal control


Remark 9.6. We denote by Sc, Sg and Ss the set of pairs (k,f) guaranty the existence of, respectively, the classical, generalized and sequential state of the system. The sets Sg and Ss are determined in Theorem 9.1 and Theorem 9.2. The set Ss will be described in the next section (see Theorem 9.4).

Prove the uniqueness of the generalized state of the considered system. 
Theorem 9.3. Under the conditions of Theorem 9.2, the generalized state of the considered system is unique.
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Figure 9.5. The higher the regularity of a state, the narrower the class of tasks.
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Figure 9.6. The degree of regularity of the parameters determines the type of the model.
Proof. Suppose there exists two generalized state of the system u1 and u2. Then we have
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The function  u = u1 – u2  satisfies the equality
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Choose ( = u. We get
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From the inequality (9.11) and the definition of the norm of the space
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, it follows that
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Then u = 0, and the following equality holds u1 = u2. (
Remark 9.7. Since not every sequential state is generalized (see Figure 9.5), from the uniqueness of the generalized state, it does not follow that the sequential state is unique.
9.4. Classic model of the heat transfer phenomenon
Now we give the substantiation of the classic approach in the base of the known relation between the classic and the generalized model.  
Theorem 9.4. Suppose the function k is lower bounded by a positive constant k0 and continuously differentiable in the interval [0,L], and the function f is continuous there. Then there exists a unique twice differentiable function u such that
                                                     [k(x) u'(x)]' = f(x), x((0,L);                                               (9.16)

                                                             u(0) = 0,  u(L) = 0.                                                      (9.17)

Proof. Under the given suppositions, from Theorem 9.3 it follows the existence of a unique generalized state, i.e. the function of the space 
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, which satisfies the equality (9.15). Using the continuity of the square integrable function, from the equality (9.16) it follows the inclusion
                                                                 (ku')'(L2(0,L).                                                         (9.18)
The function u as the generalized state of the boundary problem belongs to the Sobolev space H1(0,L). Therefore, we have u'(L2(0,L). Using the continuity of the function k, determine the inclusion ku'(L2(0,L). Now from the condition (9.18) it follows that ku'(H1(0,L). By the Sobolev embedding theorem (see Chapter 8), we have the continuous embedding of the space H1(0,L) of one dimensional functions to the space to the space of continuous function on the given interval. Then the product ku' is continuous. Consider the equality
u'(x) = k(x)u'(x) / k(x).

Here in the denominator there is a function taking exclusively positive values, and, according to the conditions of the theorem, the following inequality holds 1/k(x) ≤ 1/k0. Therefore, we have the estimate
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Thus, the function u' is continuous, and the function u is continuously differentiable. 
Using the continuity of the function f, from the equality (9.16) it follows the continuity of the functi on (ku')'. By differentiability of the functions k and u we have the continuity of the product k'u'. Then the function 

ku'' = (ku')' – k'u'
is continuous too. Consider the second derivative
u''(x) = k(x)u''(x) / k(x).

The value at the denominator here is positive. Then the second derivative u'' is continuous, besides the following inequality holds
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Using the obtained results, we conclude that the function u, satisfying the equality (9.15), belongs to the set C2[0,L]. By Theorem 2.2, the twice continuously differentiable generalized state of the system is its classic state, i.e. the classic solution of the boundary problem (9.16), (9.17). Its uniqueness follows from the uniqueness of the generalized state that is the corollary of Theorem 9.3 (
Thus, by sequential state of the system, under additional properties of its parameters, we can determine the generalized state of this system. In turn, imposing additional restrictions on the parameters of the problem, we can derive from here its classical state. The relationships between different types of system states (or solutions of the mathematical physics problem) are given in Table 9.3.
Remark 9.8. In reality, the fundamentality and the convergence of the sequence can be realized, in principle, with respect to different functional spaces. Therefore, one can determine the state system with different functional properties. 

Table 9.3. System parameters and forms of states
	result
	set of parameter
	k
	F
	form of state

	Theorem 9.1
	Ss
	k(x)(k0>0
	f(H–1(0,L)
	sequential

	Theorem 9.2
	Sg
	k(C[0,L], k(x)(k0>0
	f(H–1(0,L)
	generalized

	Theorem 9.4
	Sc
	k(C1[0,L], k(x)(k0>0
	f(C[0,L]
	classic


Remark 9.9. Suppose the function k satisfies the condition of Theorem 9.4, and the function f is square integrable. By Theorem 9.2 the considered problem has a unique solution from the space 
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. The value (ku')' belongs to the space L2(0,L), because this is equal to f by the equality (9.16). Then the sum k'u'+ku" belongs to L2(0,L). From the continuity of the derivative k' and the inclusion 
u'( L2(0,L) it follows k'u'( L2(0,L). Therefore, we have the condition ku"( L2(0,L), where the function k is continuous and has only positive value. Then we obtain u"( L2(0,L). Thus, under considered supposition, our boundary problem has a solution from the space H2(0,L).

Remark 9.10. Boundary problems for the second order differential equations can have different properties\footnote{The boundary problems for the second order differential equations are considered in}. Consider, for example, the problem

u"(x) + au(x) = 1, 0<x<(,  u(0) = 0, u(() = 0,

where a is a constant. This differential equation has the general solution 
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where c1 and c2 are arbitrary constants. These constants can be found from the given boundary conditions. For example, for a = 2 we find its values and obtain the unique solution of the boundary problem by the previous formula. However, for  a = 4  both boundary conditions are transformed to the same equality 

c2 +1/4 = 0.
Therefore, we can find here c2, but the constant c1will be arbitrary. Thus, the boundary problem has an infinite set of solutions. Finally, for  a = 1, from boundary conditions we get the equalities  

c2 +1 = 0,  –c2 +1 = 0.

We have the contradiction, and the boundary problem is insolvable. These properties are related to the spectral theory for operators\footnote{The spectral theory for operators are considered, for example, in}. The theory of the boundary problems for non-linear differential equations is even more difficult\footnote{Consider the Chafee–Infante boundary problem 

 u"(x) + au(x) – b[u(x)]3 = 1, 0<x<(,  u(0) = 0, u(() = 0,

where a and b are positive constants. One can prove (see …) that under the inequality (k–1)2 < b < k2, where k is an arbitrary natural number, the boundary problem has 2k–1 solutions}.
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Figure 9.7. Practical realization of the difference equations.
Extremely important here is the fact that all three types of model are repelled from the same balance relations and output to the same discrete model. In this connection, the question arises, what type of solutions is obtained when solving the difference equations (9.6), (9.7) in practice (see Figure 9.7)? Apparently, if it is not possible to establish even fundamentality for the sequence of interpolations {uh} of the grid function determined from difference equations, then we cannot even guarantee the finding of even a sequential state of the system. If, however, the considered sequence is fundamental, but does not converge in the corresponding sense, then it is possible to obtain a sequential state of the system, but not to guarantee that it will become a generalized state. If under the condition of the convergence of the sequence {uh} the corresponding limit is not sufficiently smooth, then the generalized state of the system that is not classical is realized. Finally, in the case of sufficient smoothness of the limit, it will already be the classical state of the system.

Now we consider a formalization of the obtained results. 

9.5. Models of mathematical physics problems 
Consider a physical phenomenon, for example, the stationary heat transfer phenomenon (see Table 9.4). We have the process in the set (, for example, on the interval [0,L]. The given set is divided by the system Г of measurable subsets {(}. The example of this system is the set of elementary interval (i = (xi-1, xi). Denote by hГ the maximal measure of the set ((. It was be the ste p h for our situation. 
Remark 9.11. ( is a multiindex for the multidimensional case. The set  ( can include also time interval if we consider non-stationary system. 
The discrete state of the system on the set Г is described by a grid function 
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 for our case. Denote by VГ the set of all grid functions in Г that is Vh for the considered system.
Remark 9.12. The state of the system can be described by a vector function. 
The discrete state at the concrete elementary cell ( is described by the equality 
                                                                         А
[image: image110.wmf]u

G

= 0                                                          

in accordance with any physical laws, where Аis an operator. Determine for the stationary heat transfer phenomenon
Ai 
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Then determine the discrete state operator АГ on the set VГ such that Аis its restriction on the set (. The discrete model of the system is the equality
                                                                         АГ
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This this the equalities (9.6), (9.7) for the considered system. 
Then we have a prolongation operator ( that transforms the discrete state 
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 to the function 
uГ = (
[image: image117.wmf]u
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, which is determined on the set is ( and is an approximate state of the system. For example, this is the linear interpolation of the grid function, which satisfies the equality (9.8). 
Remark 9.12. This will be approximate state after the corresponding justification, see Theorem 9.1 and Theorem 9.2. 
Consider the set of approximate solutions {uГ} with respect to all possible partitions Г of the set (. 
Remark 9.13. The strict definition of the notions of the space that can be non-metric needs to use filter theory or net theory\footnote{The filter theory is described in Bourbaki, and the net theory is  described in Kelley}. However, we shall, for simplicity, still refer to the set of approximate states {uГ} as a sequence.
The convergence and the fundamentality of the sequence {uГ} as hГ(0 save the same sense as before. Besides, the fundamental sequences {uГ} and {vГ} are equivalent if the sequence of difference {uГ – vГ} tends to zero. Particularly, we had the fundamentality with respect to the weak topology of the space 
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 for the considered example.
Definition 9.2. If the sequence {uГ} is fundamental with respect to a linear topological space, then this is called the sequential model, and the corresponding equivalence class is called the sequential state. 
Remark 9.15. Of course, these state and model depend from the functional space, where we determine the fundamentality of the sequence of the approximate states.  
Table 9.4. Process of construction of the mathematical models 
	object
	general case
	heat transfer

	set
	(
	[0,L]

	elementary volume
	(
	(xi-1, xi)

	partition of the set
	Г = {(}
	Г = {(xi-1, xi)}

	discrete state
	uГ = {u}
	uГ = {ui}

	discrete model
	А
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u0 = 0, uM = 0

	space
of grid functions
	VГ
	Vh

	prolongation
of discrete state
	(
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	linear interpolation uh
of the discrete state

	space

of fundamentality
	H
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 with weak topology

	sequential
model
	{uГ}
	{uh}

	sequential 
state
	[uГ]
	[uh]

	space
of convergence
	U
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of test functions
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	generalized
model
	В(u = 0  ((
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	space
of regular functions
	V
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	classic
model
	Au = 0
	[k(x) u'(x)]' = f(x), x((0,L)

u(0) = 0,  u(L) = 0


Obviously, Definition 9.1 is a partial case of Definition 9.2. If any real or p-adic number is approximated by rational numbers, the arbitrary distribution by infinitely differentiable functions, and the sequential control by usual controls, then the sequential state of the system is approximated by its approximate states, which are determined by the relations (9.19) for each partition of the given set. When the domain ( is unboundedly divided into cells, the set of approximate states can to be fundamental in the indicated sense. Then it determines a sequential model of the system and thereby determines its sequential state.

One is the necessity to analyze the system of approximate solutions only for checking the fundamentality of the system. This information is known. We do not use the solution of a problem that we initially do not know anything about. An infinite number of sequential models correspond to a specific sequential model, just as a real number can be approximated by different rational sequences, a generalized function by different sequences of regular functions, and sequential control by many sequences of usual controls. This circumstance gives a certain freedom of choice of a specific algorithm in the practical solution of the problem.

Determine the connection between the introduced concepts and the results obtained on the basis of the classical and generalized approaches. Let ((,()Г be a scalar product on the set VГ of the grid functions. Then the equality (9.19) is equivalent to
                                                           (АГ
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This is the equality (9.15) for our example. 
Consider linear topological spaces U and ( of functions that are determined on the set  ( such that U is a subspace of Н. Suppose there exists a functional ВГ on the product of U and ( that is linear with respect to the second argument such that 
(АГ
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where (( is a prolongation operator from VГ to (. Particularly, for the stationary heat transfer phenomenon U is the set 
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 with weak topology, ( is the same set with strong topology, (( is the linear interpolation of the grid function, i.e. (( =(, and the operator BГ is determine by the formula
BГ(u,() = 
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Now the equality (9.20) is transformed to
                                                           BГ((
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that is analogue of (9.16). Suppose the set of all prolongations ((
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 is dense in (. Then for any ((( we can choose the values 
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as hГ ( 0. Suppose also the following convergence
                                                                   (
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The conditions (9.22), (9.23) for the considered example are true by the proof of the Theorem 9.2. 
Suppose now there exists an operator В on the product ((U that is linear with respect to the first argument such that from the conditions (9.22), (9.23) it follows the convergence
                                                          BГ((
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For our case the functional B is determined by the formula
B(u,() = 
[image: image147.wmf]1

0

00

.

  ,(0,)

LL

H

ddu

kdxfdxuL

dxdx

l

ll

-"Î

òò


After passing to the limit at the equality (9.21) with using the condition (9.24) we get  

                                                                В(u = 0  ((,                                                      (9.25)

that is an analogue of the equality (9.15). Now we can give the definition of the generalized model of the system that has the generalized model of the stationary heat transfer phenomenon as the partial case. 
Definition 9.3. The generalized model of the system is the equality  XE "модель:обобщенная" (9.25), and its generalized state  XE "состояние:обобщенное" is the function u(U that satisfies this equality.
By this definition, the sequence {uГ} is convergent, and therefore, fundamental in the sense of the space U. Besides, its limit u coincides up to isomorphism with the class of equivalent sequences  with the representation {uГ}. Similarly, the limit of a convergent fundamental sequence of rational numbers (respectively, smooth functions and usual controls) is identified with a regular equivalence class defined by a given sequence with a real number (respectively, a distribution and sequential control). Thus, the generalized state of the system necessarily turns out to be its sequential state.

Definition 9.3 applies stronger requirements to the sequential model than definition 9.2. Therefore, the existence of a sequential state of the system is possible in the absence of a generalized state. In this case, the sequential state can be called a sequential solution of problem (9.25). It is clear that under these conditions this relation is only a formal expression in the same way as in the absence of a classical solution the boundary value problem itself (in the usual interpretation) does not make sense, but is understood only as an short notation of the corresponding integral equality.

Now consider the classic approach. Let V be a linear topological space such that embedding of V to U is continuous. Suppose there exists an operator A that is determined on the space V such that the following equality holds
< Au, = В(u  (u(U, (.
For our example V is the space 
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 of twice continuously differentiable functions on the interval [0,L] with zero value at the ends of the interval, and the operator A is determined by the formula 
Au = (ku')' – f.
From the equality (9.25) it follows that
< Au, = 0 ((.
Then we obtain
                                                                           Au = 0.                                                             (9.26)
Definition 9.4. The classic model of the system is the equality (9.26), and its classic state  XE "состояние:классическое" is the function u(U that satisfies this equality.
If there exists a classical state of the system, then (after choosing of functional spaces), this is a generalized state of the system, and hence its sequential state. However, in Definition 9.4, even stronger requirements are imposed on the sequential model {uГ}. Then a situation is possible where the classical state of the system is absent, but there is only its generalized or even only sequential state (see Figures 9.5 and 9.6). In this case, a generalized (sequential) state can be called a generalized (respectively, sequential) solution of equation (9.21), in contrast to its classical solution, which is a classical state of the system. In this case, equation (9.26) should be understood only as a formal abbreviated record of the corresponding generalized or sequential model.

The obtained results give a certain hope for the possibility of a wide application of the sequential approach in mathematical physics.
Conclusion
1. By physical laws, the balance relations that are described the processes occurring in the elementary volume of the object under consideration are determined.
2. The classical method of determination of mathematical physics equations uses the passage to the limit in the balance relations that requires the a priori properties of the state function of the system. One cannot any possibility to check it before the determination of the mathematical model. 
3. An attempt to determine a generalized model of the system, connected with the passage to the limit after multiplying the existing equality by some test function and integrating over a given set, leads to analogous difficulties. 
4. To overcome the difficulties that have arisen, a sequential method is used that is related to the Cauchy convergence criterion and the completion of a metric space and provides the possibility of justifying the convergence of the sequences. 
5. The sequential method is successfully used for the constructive determination of the real and the p-adic numbers, the sequential controls and the distributions.
6. The application of the sequential approach to the problems of mathematical physics begins with the construction of a discrete model of the system on the basis of available balance relationships and does not require any mathematical assumptions. 
7. By the discrete model for an arbitrary partition of the domain into elementary parts, the corresponding grid function and its interpolation to the whole given set can be found, which is interpreted as the "approximate state" of the system.
8. If the sequence of "approximate solutions" is fundamental, then it is called a sequential model of the system, and the equivalent equivalence class corresponding to it is the sequential state of the system.
9. The justification of the sequential approach does not require any a priori suppositions with respect to the state function.
10. By the sequential approach, the determination of the model, the proof of the existence of the system state and the justification of the algorithm for approximate solution of the problem are realized simultaneously. 
11. The approximate value of the sequential state of the system is determined from the discrete model underlying the practical finding of the classical and generalized state of the system.
12. The approximate value of the sequential state of the system is the linear interpolation of the solution of the discrete model.
13. Under additional supposition, the sequence of the approximate solutions tends the generalized state of the system.
14. The generalized state of the system is unique. 
15. Each generalized state of the system is determined by its sequential state. However, not every sequential state is reduced to a generalized one.
16. The classic state of the system is unique. 
17. The practical solving of the discrete model can give the sequential, generalized, and classic state. The result depends from the convergence properties. 
18. The sequential method not only determines the weaker form of the model, which is realized even in cases when it is not possible to obtain other forms of models, but also gives a justification for the process of constructing the classical and generalized models.
This problem is interesting not only in itself. In the process of its research, we encountered various seemingly unrelated mathematical directions. This is an excellent illustration of the fact that Mathematics is a unified science, and the boundaries of its directions are very conditional.
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